PCBDESIGN007 - An IConnect007 Publication
Tweet This ArticleTweet    Send Us Feedback About This ArticleFeedback    E-Mail This Article To A FriendE-Mail    Print This ArticlePrint
Benefits of Coplanar Waveguide Over Ground
Wednesday, March 21, 2012 | Steve Hageman, Analoghome.com

I've written articles about a few of the idiosyncrasies we may encounter when using coplanar waveguide over ground (CPWG) in our PCB designs [1]. Now that we have gotten through all that design work, some might ask, why go to all the bother with CPWG?

Well, there are several reasons to use CPWG:

1. It allows us to narrow the trace almost arbitrarily for a given layer thickness while maintaining a 50 or 75 ohm impedance. This helps us to more closely match our component width with the PCB trace width. This not only makes our RF designs perform better it saves PCB real estate.

2. Less current flows into the air with CPWG compared to a microstrip structure. This is because the topside ground copper shunts the field current locally to the topside ground.

Our RF designs are not only getting smaller but thinner too (have you seen those super low-profile tantalum and ceramic capacitors?). This is great, but our designs still need to meet radiated emissions and conducted susceptibility specifications. This means that our shields are getting closer to the PCB surface also; shields are closer to the PCB than they were a decade ago.

Take a look at one of those embedded WiFi, Bluetooth or GPS modules on the market and note how low the shield height is over the PCB. Total module heights under 100 mils are now very common. Just what is the effect of placing that metal shield very close to our carefully designed 50 ohm traces?

Most RF designers use rules of thumb to space things appropriately. For instance, in microstrip design, many designers use a rule of thumb to keep topside copper away from their microstrip by four times the substrate layer thickness so as to not affect their microstrip impedance. With CPWG you don't have to worry about this since the topside ground is purposefully brought up next to the topside RF trace.

But do you have to worry about that close board shield?

To find out, I conducted a series of EM simulations using Sonnet tools [2] and the usual textbook formulas to see the effect of the shield height over the PCB.

For two different substrate thicknesses I compared microstrip with CPWG versus cover height just to get a feel on the sensitivity.

Now, just a word of caution here: It would be easy to interpolate a number off of the following graphs and think that you have a four-digit accurate value. This is simply not the case. These graphs represent the finest “simulated bits” to be found anywhere, but because they are simulated they should be used as a guide for further study and real engineering evaluation. That's how I am using this information – as a trending indicator for future engineering evaluation and proof on real hardware.

Let's take a look at a comparison of trace impedance vs cover height for a microstrip and CPWG on a 62 mil thick substrate (Figure 1).

Figure 1. Comparison of trace impedance vs cover height for a microstrip and CPWG on a 62 mil thick substrate.

In Figure 1, it is easy to see that the microstrip trace impedance (red trace) is much more sensitive than the CPWG trace (blue trace) to the cover height.


To sign up for our newsletters, click here.

Tweet This ArticleTweet    Send Us Feedback About This ArticleFeedback    E-Mail This Article To A FriendE-Mail    Print This ArticlePrint



MOST READ
MOST EMAILED
TODAY THIS WEEK THIS MONTH
No new articles were published today.